

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZB-R01-2100219

TEST REPORT

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court, Bells Yew Green,

Tunbridge Wells TN3 9BJ

Equipment Under Test (EUT)

Product Name: Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot

Miner

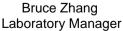
Model No.: HNTIN-470-G, HNTIN-868-G, HNTIN-915-G,HNTIN-433-G,

HNTIN-470, HNTIN-868, HNTIN-915, HNTIN-433

Applicable standards: AS / NZS CISPR 32: 2015

Date of sample receipt: 12 Mar., 2021

Date of Test: 13 Mar., to 19 Apr., 2021


Date of report issue: 08 May., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

The RCM mark as shown below can be used, under the responsibility of the manufacturer, after completion of an RCM Declaration of Conformity and compliance with all relevant RCM Directives.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	08 May., 2021	Original

Y pro Wr Tested by: Date: 08 May., 2021

Test Engine

Date:

Project Engineer Reviewed by: 08 May., 2021

Page 2 of 42

Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4		PAGE	
5			
	5.1	CLIENT INFORMATION	5
	5.2		
	5.3		
	5.4		
	5.5		
	5.6		
	5.7		
	5.8		
	5.9 5.10		
6	TES	T RESULTS	8
	6.1	EMI (EMISSION)	8
	6.1.1		
	6.1.2	2 Conducted Emission	14
7	TES	T SETUP PHOTO	18
ጸ	FUT	CONSTRUCTIONAL DETAILS	20

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test Summary

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission	AS/NZS CISPR 32	AS/NZS CISPR 32	Class B	PASS
Conducted Emission	AS/NZS CISPR 32	AS/NZS CISPR 32	Class B	PASS

Remark:

* UT is the nominal supply voltage. Pass: Meet the requirements, N/A: not applicable.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

General Information

5.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ
Manufacturer:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ
Factory:	SUNSOAR TECH CO., LIMITED
Address:	4/F, Block E, Fengze Building, Huafeng No.2 Industrial Park, Hangkong Road, XiXiang Town, BaoAn District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner
Model No.:	HNTIN-470-G, HNTIN-868-G, HNTIN-915-G,HNTIN-433-G, HNTIN-470,HNTIN-868, HNTIN-915,HNTIN-433
Hardware version:	V12-15-2020-1614
Software version:	a98bfc8
Power supply:	DC 12V
AC adapter:	Model: TM-K018VP-01201500PE-Z Input: 100-240V~50/60Hz 0.45A Output: 12.0V , 1.5A
Remarks:	Model No.: HNTIN-470-G, HNTIN-868-G, HNTIN-915-G,HNTIN-433-G, HNTIN-470,HNTIN-868, HNTIN-915,HNTIN-433 has the same internal circuit design, layout, components and internal wiring. The difference is that the ones with the -G suffix have GPS function, while those without the suffix do not. Each model has two appearances, except for the appearance, the interior is exactly the same. In addition, the corresponding frequency of each model of LoRa module is different, as follows: The Nebra HNT Indoor Hotspot is available in 4 variants to support multiple regions. It is available in the following frequency variants: 433 MHz (HNTIN-433) 470 Mhz (HNTIN-470) 868 Mhz (HNTIN-868) 915 Mhz (HNTIN-915)

5.3 Test mode and voltage

Woking:	Keep the EUT in Woking mode
Test voltage:	AC 230V/50Hz
Remark:	1. During the test, pre-scan 120Vac/60Hz and 230Vac/50Hz of the Power supply, found 230Vac/50Hz was worse case mode.
	2. The report only reflects the worst mode.

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Report No.: JYTSZB-R01-2100219

DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB
Radiated Emission (18GHz ~ 26.5GHz)	±3.36 dB

5.6 Description of Cable Used

N/A

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax:+86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Monitoring of EUT for the Immunity Test

Other:	Monitored the data link of EUT
0	

5.10 Test Instruments list

Radiated Emission:	Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b)	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022	
Pre-amplifier	CD	TRLA- 010180G50B	20120401	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022	
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
Cable	HP	10503A	N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

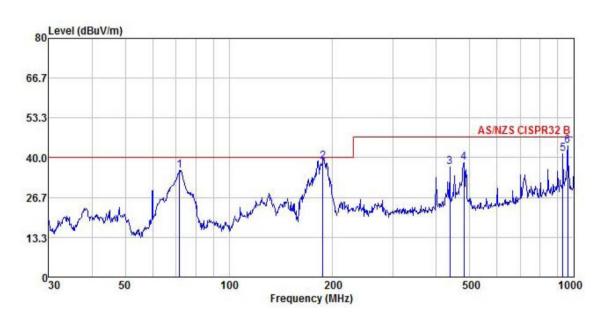
6 Test Results

6.1 EMI (Emission)

6.1.1 Radiated Emission

0.1.1	Radiated Ellission							
	Test Requirement:	EN 55032						
	Test Method:	EN 55032						
	Test Frequency Range:	30MHz to 6GHz						
	Test Distance:	3m						
	Receiver setup:	Frequency Detector		RBW		VBW	Remark	
		30MHz-1GHz	Qua	si-peak	100kHz		300kHz	QP Value
		Above 1GHz	Р	eak eak	11	ИHz	3MHz	PK Value
		Above IGIIZ	Ave	erage	11	ИHz	3MHz	AV Value
	ITE Limit:	Frequency		Limi	t (dBuV	/m @3m)		Remark
		30MHz-230MHz			40.0)		QP Value
		230MHz-1GHz			47.0)		QP Value
		1GHz-3GHz			50.0)		AV Value
		10112-30112			70.0)		PK Value
		3GHz-6GHz			54.0)		AV Value
		30112-00112			74.0)		PK Value
	FM Receiver limit:	Frequency		Limi	t (dBuV	<u>/m @3m)</u>		Remark
		Печиенсу		Fundan	nental	Harmonio	s	INGINAIN
		30MHz-230MHz				52		QP Value
		230MHz-300MHz	<u> </u>	60)	52		QP Value
		300MHz-1000MH	Z			56		QP Value
	Test setup:	Below 1GHz:				Above 10	GHz:	
			Antenna Antenna Antenna Antenna Antenna	Antenna Tower		(fun	Grand Retense	Anthonia Tower Plane Director Controls Cont
		EUT setup:	Boundary of E (imaginary cir	Reference point of antenna calibration are considered antenna calibration and are considered antenna calibration and are considered and are consid				Boundary of EUT (Inaginary circular periphery) Start position for measurement distance (End position, reference point of antenna calibration, not shown)
	Test Procedure:	 30MHz to 1GHz: The radiated emissions test was conducted in a semi-anechoic chamber. The table top EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters 						

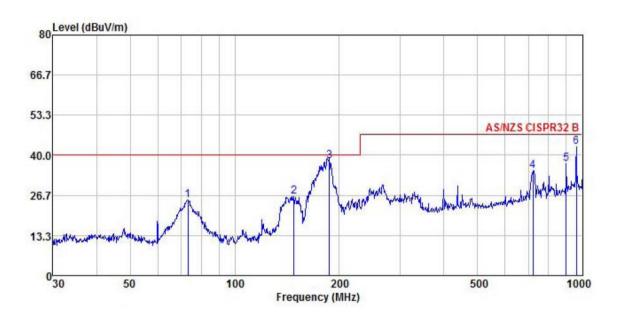
	 in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization. Above 1GHz: The radiated emissions test was conducted in a fully-anechoic chamber. The table top EUT was placed upon anon-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum plots of the EUT. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed



Measurement Data:

Below 1GHz:

Product Name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner	Product Model:	HNTIN-868-G
Test By:	Yaro	Test mode:	Working mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 230/50Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor				Limit Line		Remark
55	MHz	dBu∀	dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1	71.832	54.27	10.62	0.66	29.71	35.84	40.00	-4.16	QP
2	187.096	48.85	17.29	1.34	28.92	38.56	40.00	-1.44	QP
3	437.120	44.44	19.18	2.14	28.85	36.91	47.00	-10.09	QP
4	480.528	45.53	19.33	2.31	28.92	38.25	47.00	-8.75	QP
5	932.272	42.86	22.73	3.43	27.78	41.24	47.00	-5.76	QP
6	962.162	45.34	22.88	3.53	27.65	44.10	47.00	-2.90	QP

Remark:

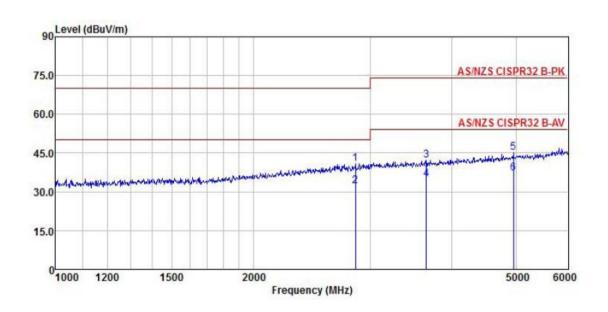
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner	Product Model:	HNTIN-868-G
Test By:	Yaro	Test mode:	Working mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 230/50Hz	Environment:	Temp: 24℃ Huni: 57%

it Remark	Over Limit	Limit Line				Intenna Factor		Freq	
<u>⊞</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	₫B	dB/m	dBu∜	MHz	
87 QP	-14.87	40.00	25.13	29.69	0.66	11.06	43.10	73.359	1
30 QP	-13.60	40.00	26.40	29.23	1.02	14.14	40.47	147.921	2
32 QP	-2.02	40.00	37.98	28.92	1.34	17.29	48.27	187.096	3
)9 QP	-12.09	47.00	34.91	28.58	2.90	20.55	40.04	721.726	4
33 QP	-9.83	47.00	37.17	27.88	3.36	22.60	39.09	900.147	5
31 QP	-4.31	47.00	42.69	27.65	3.53	22.88	43.93	962.162	6
86008	-14.8 -13.6 -2.0 -12.0 -9.8	40.00 40.00 40.00 47.00 47.00	25.13 26.40 37.98 34.91 37.17	29. 69 29. 23 28. 92 28. 58 27. 88	0.66 1.02 1.34 2.90 3.36	11.06 14.14 17.29 20.55 22.60	43.10 40.47 48.27 40.04 39.09	73.359 147.921 187.096 721.726 900.147	1 2 3 4 5

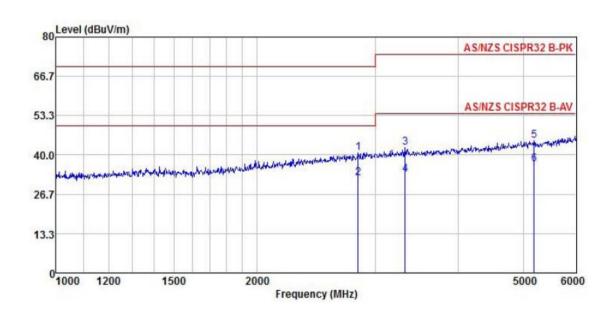
Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.


^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner	Product Model:	HNTIN-868-G
Test By:	Yaro	Test mode:	Working mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 230/50Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	₫₿	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2852.453 2852.453	58.99 50.16	28.10 28.10	8.37 8.37	54.57 54.57	40.89 32.06		-29.11	Peak Average
3	3652.610	58.40	28.89	9.39	54.47	42.21	74.00	-31.79	Peak
5	3652, 610 4953, 236 4953, 236	50.98 57.54 49.51	28.89 31.11 31.11	9.39 10.91 10.91	54.47 54.29 54.29	34.79 45.27 37.24	74.00	-28.73	Average Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

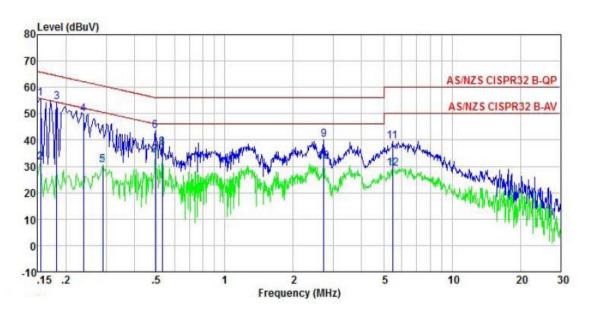
Product Name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner	Product Model:	HNTIN-868-G
Test By:	Yaro	Test mode:	Working mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 230/50Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	$\overline{}\overline{dB/m}$	₫B	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1	2832.082	59.05	28.05	8.35	54.58	40.87	70.00	-29.13	Peak
2	2832.082	50.34	28.05	8.35	54.58	32.16	50.00	-17.84	Average
3	3327.664	59.30	28.60	9.00	54.51	42.39	74.00	-31.61	Peak
4	3327.664	50.22	28.60	9.00	54.51	33.31	54.00	-20.69	Average
5	5189.446	56.63	31.63	10.83	54.30	44.79	74.00	-29.21	Peak
6	5189.446	48.71	31.63	10.83	54.30	36.87	54.00	-17.13	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

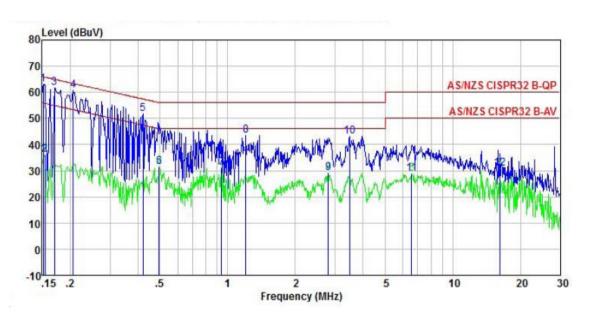
6.1.2 Conducted Emission


Test Requirement:	EN 55032					
Test Method:	EN 55032					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW = 9kHz, VBW = 30kHz					
Limit:		Limit	(dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test setup:	Reference	Plane				
	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver				
Test procedure	The E.U.T and simulators are impedance stabilization network coupling impedance for the material are also connected to the material south south and to the block diagram of the table. Line are checked for material find the maximum emission, the interface cables must be conducted measurement.	ork (L.I.S.N.). Which peasuring equipment. ain power through a nace with 50ohm termest setup and photogoximum conducted inthe relative positions of	provide a 50ohm/50uH The peripheral devices LISN that provides a prination. (Please refers graphs). Both sides of terference. In order to of equipment and all of			
Test Instruments:	Refer to section 5.10 for detail	ls				
Test mode:	Refer to section 5.3 for details	·				
Test results:	Passed					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

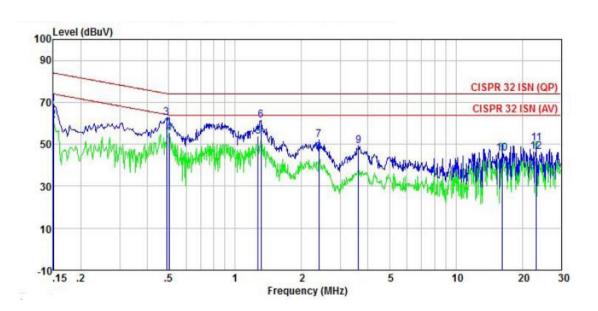
Product name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner	Product model:	HNTIN-868-G
Test by:	Yaro	Test mode:	Working mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 230 V/50 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	−−−−dB	dB	dBu∛	dBu₹	<u>dB</u>	
1	0.154	45.66	10.12	0.01	0.01	55.80	65.78	-9.98	QP
2	0.154	21.30	10.12	0.01	0.01	31.44	55.78	-24.34	Average
3	0.182	44.39	10.13	0.00	0.01	54.53	64.42	-9.89	QP
4	0.238	39.50	10.17	0.00	0.02	49.69	62.17	-12.48	QP
1 2 3 4 5 6 7 8 9	0.289	20.22	10.20	0.01	0.03	30.46	50.54	-20.08	Average
6	0.494	33.11	10.34	0.03	0.03	43.51	56.10	-12.59	QP
7	0.494	23.84	10.34	0.03	0.03	34.24	46.10	-11.86	Average
8	0.529	26.77	10.35	0.03	0.03	37.18			Average
9	2.721	29.33	10.57	0.28	0.10	40.28	56.00	-15.72	QP
10	2.721	20.76	10.57	0.28	0.10	31.71	46.00	-14.29	Average
11	5.476	28.01	10.68	0.71	0.09	39.49	60.00	-20.51	QP
12	5.476	17.86	10.68	0.71	0.09	29.34	50.00	-20.66	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner	Product model:	HNTIN-868-G		
Test by:	Yaro	Test mode:	Working mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral		
Test voltage:	AC 230 V/50 Hz	Environment:	Temp: 22.5℃ Huni: 55%		


	Freq	Read Freq Level		Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	₫B	₫B	₫B	dBu₹	dBu∀	dB	
1	0.152	53.10	9.89	0.01	0.01	63.01	65.91	-2.90	QP
2	0.154	26.11	9.89	0.01	0.01	36.02	55.78	-19.76	Average
3	0.170	51.94	9.90	0.01	0.01	61.86	64.94	-3.08	QP
4	0.206	50.86	9.93	0.00	0.04	60.83	63.36	-2.53	QP
2 3 4 5 6 7 8 9	0.421	41.69	10.14	-0.04	0.04	51.83	57.42	-5.59	QP
6	0.497	21.38	10.20	0.03	0.03	31.64	46.05	-14.41	Average
7	0.938	20.57	10.53	0.07	0.04	31.21	46.00	-14.79	Average
8	1.203	32.81	10.62	0.10	0.09	43.62	56.00	-12.38	QP
9	2.794	17.82	10.88	0.28	0.10	29.08	46.00	-16.92	Average
10	3.472	31.69	10.93	0.41	0.08	43.11	56.00	-12.89	QP
11	6.557	16.74	11.08	0.81	0.10	28.73	50.00	-21.27	Average
12	16.226	16.72	11.45	2.38	0.16	30.71			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner	Product model:	HNTIN-868-G		
Test by:	Yaro	Test mode:	LAN mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	1		
Test voltage:	AC 230 V/50 Hz	Environment:	Temp: 22.5℃ Huni: 55%		

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>d</u> B	dB	dBu₹	dBu∜	<u>db</u>	
1	0.150	58.99	9.95	0.00	0.01	68.95	84.00	-15.05	QP
2	0.150	51.58	9.95	0.00	0.01	61.54	74.00	-12.46	Average
3	0.489	53.04	9.69	0.00	0.03	62.76	74.19	-11.43	QP
4	0.502	45.46	9.69	0.00	0.03	55.18	64.00	-8.82	Average
5	1.269	44.19	9.58	0.00	0.10	53.87	64.00	-10.13	Average
6	1.310	51.83	9.59	0.00	0.11	61.53	74.00	-12.47	QP
7	2.396	42.25	9.65	0.00	0.15	52.05	74.00	-21.95	QP
2 3 4 5 6 7 8 9	2.396	36.07	9.65	0.00	0.15	45.87	64.00	-18.13	Average
9	3.623	39.50	9.66	0.00	0.08	49.24	74.00	-24.76	QP
10	16.226	35.82	9.81	0.00	0.16	45.79	64.00	-18.21	Average
11	23.140	40.60	9.76	0.00	0.17	50.53	74.00	-23.47	QP
12	23.140	36.63	9.76	0.00	0.17	46.56	64.00	-17.44	Average

Notes:

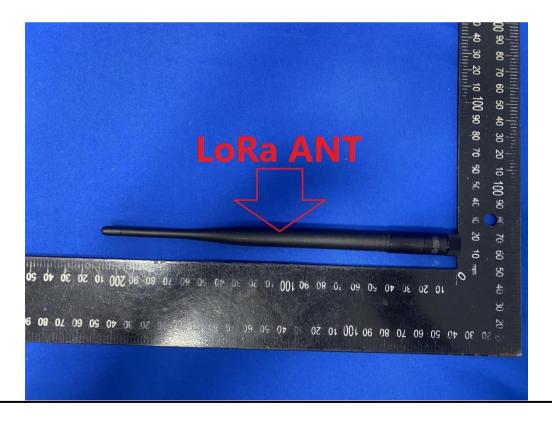
- 4. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 5. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 6. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Project No.: JYTSZE2104038

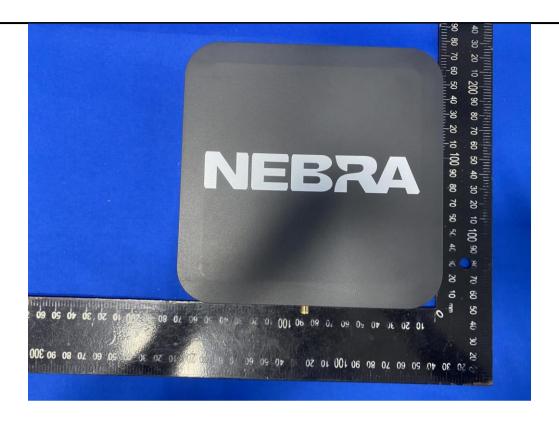
7 Test Setup Photo

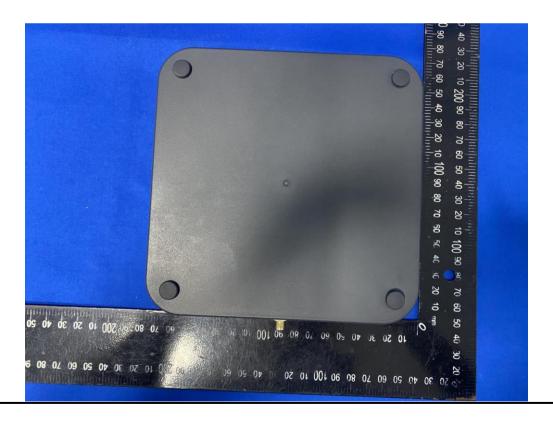
Conducted Emission (for LAN)

8 EUT Constructional Details

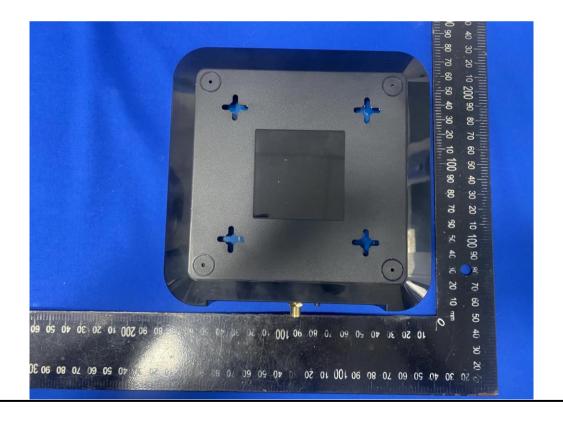


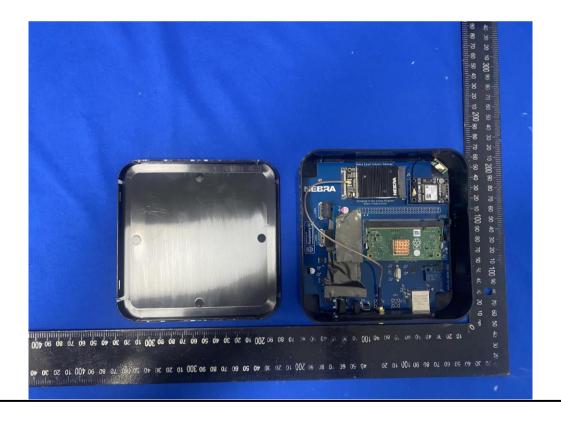
Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

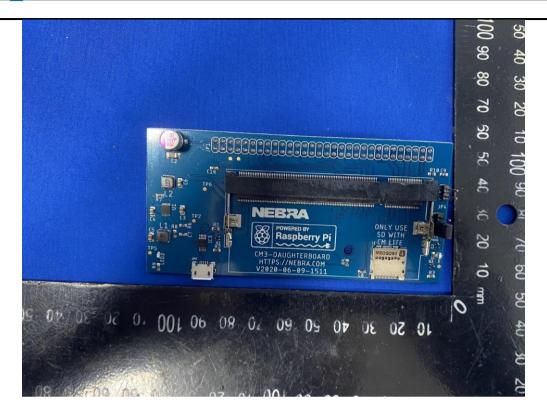


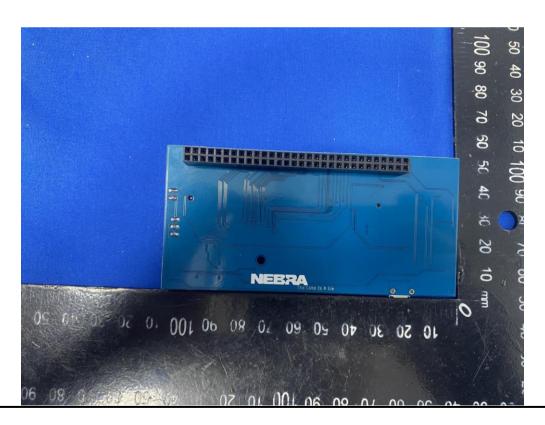




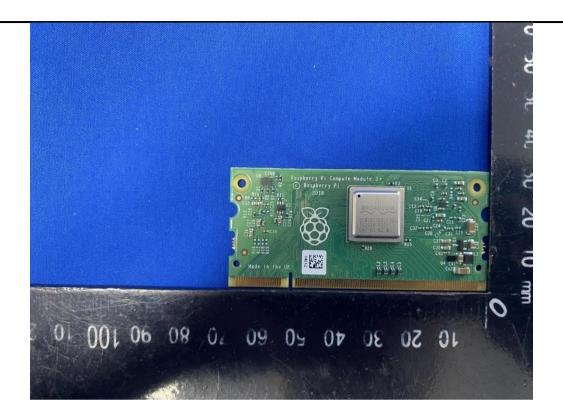




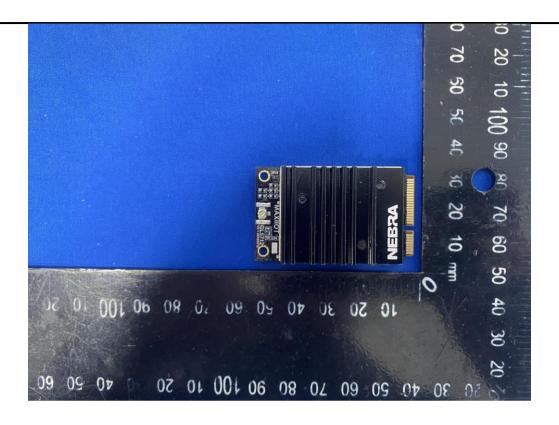


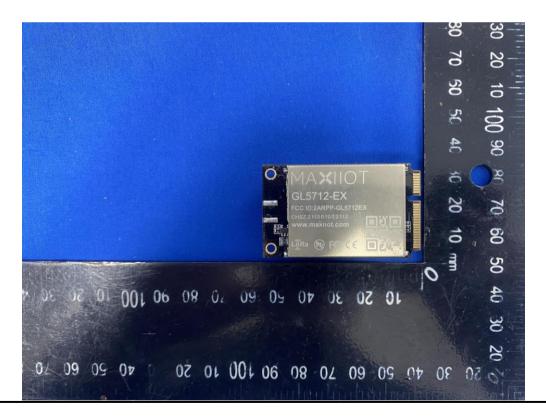

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

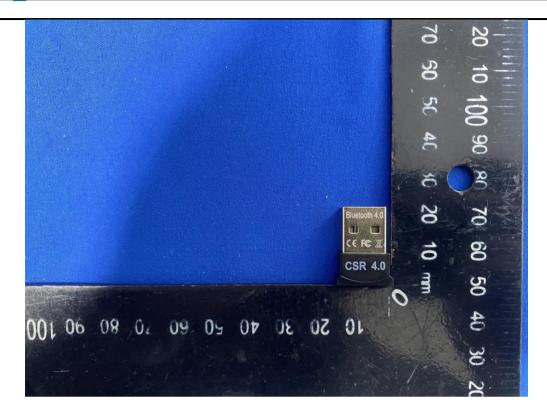
Page 30 of 42

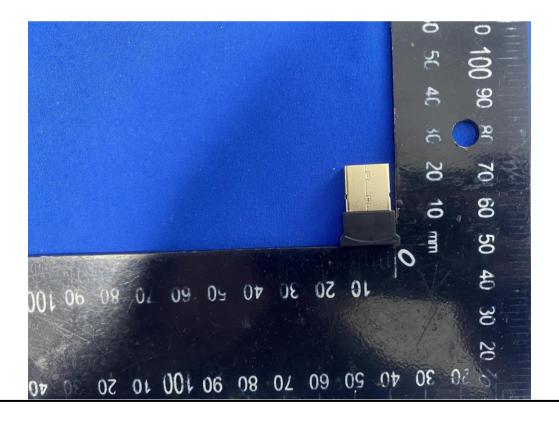


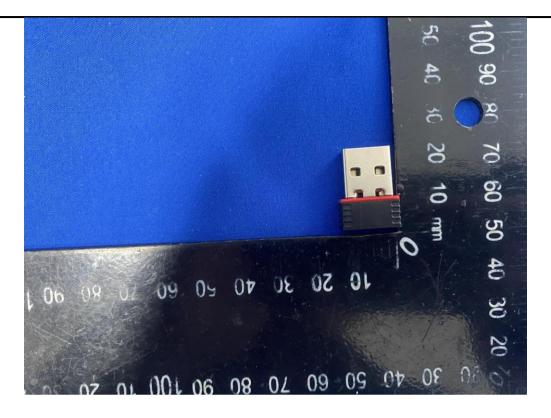


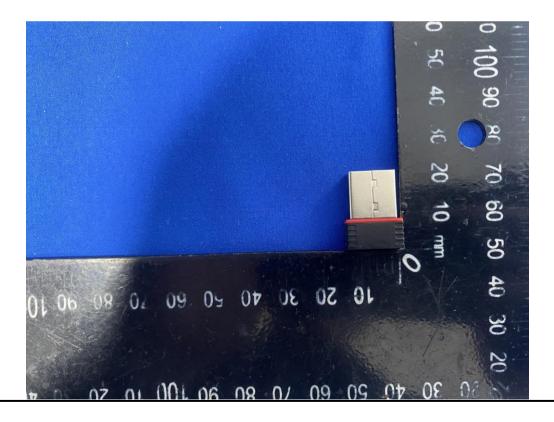


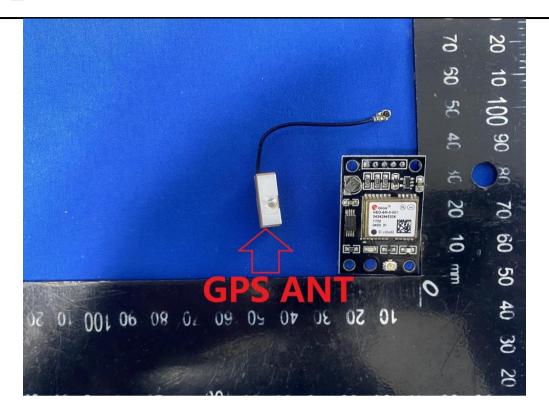


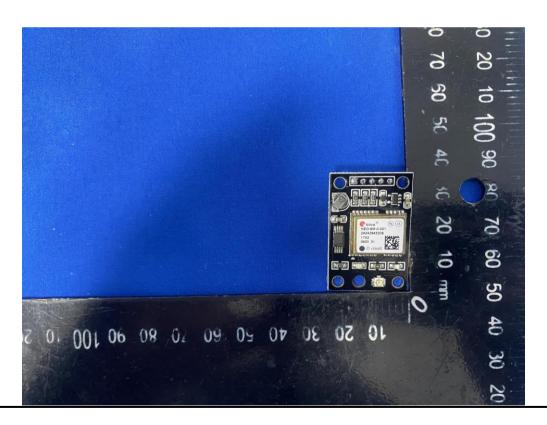


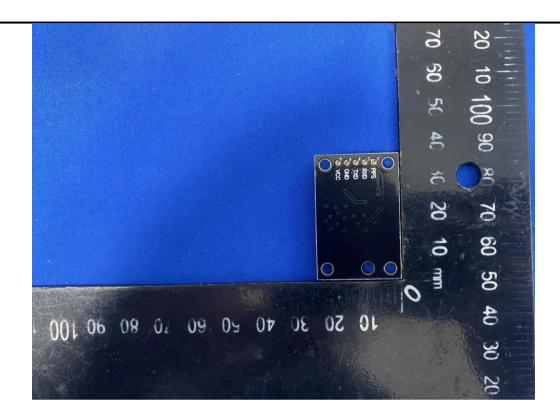


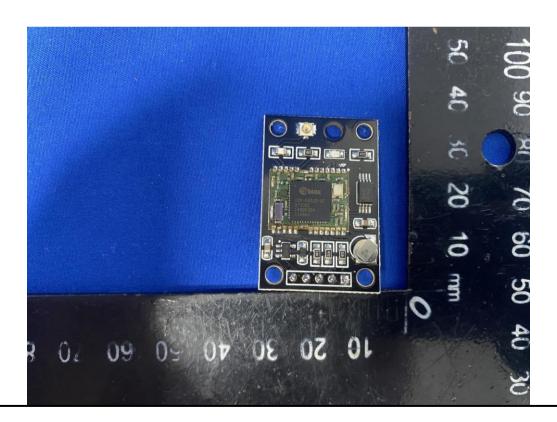


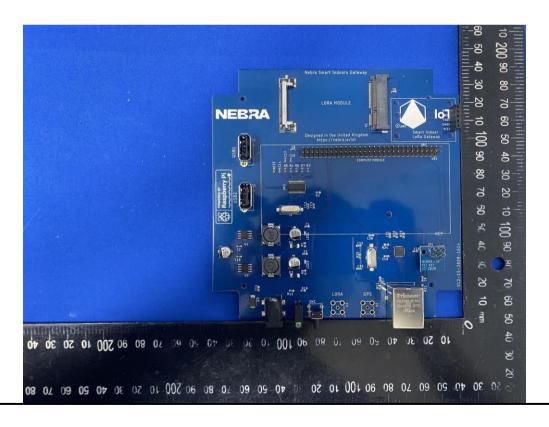


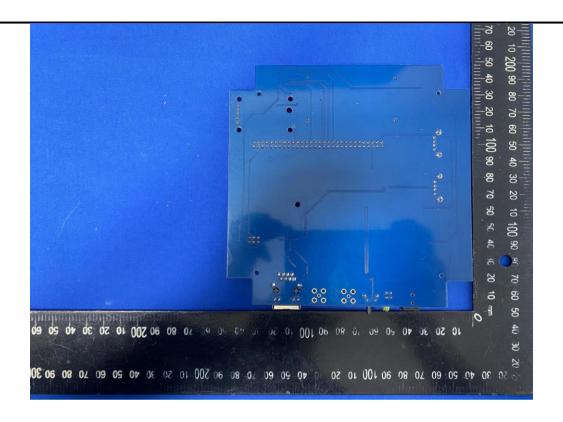












-----End of report-----